Oberleitner D, Schmid R, Schulz W, Bergmann A, Achten C
Research article (journal) | Peer reviewedDue to growing concern about organic micropollutants and their transformation products (TP) in surface and drinking water, reliable identification of unknowns is required. Here, we demonstrate how non-target liquid chromatography (LC) – high-resolution tandem mass spectrometry (MS/MS) and the feature-based molecular networking (FBMN) workflow provide insight into water samples from four riverbank filtration sites with different redox conditions. First, FBMN prioritized and connected drinking water relevant and seasonally dependent compounds based on a modification-aware MS/MS cosine similarity. Within the resulting molecular networks, forty-three compounds were annotated. Here, carbamazepine, sartans, and their respective TP were investigated exemplarily. With chromatographic information and spectral similarity, four additional TP (dealkylated valsartan, dealkylated irbesartan, two oxygenated irbesartan isomers) and olmesartan were identified and partly verified with an authentic standard. In this study, sartans and TP were investigated and grouped regarding their removal behavior under different redox conditions and seasons for the first time. Antihypertensives were grouped into compounds being well removed during riverbank filtration, those primarily removed under anoxic conditions, and rather persistent compounds. Observed seasonal variations were mainly limited to varying river water concentrations. FBMN is a powerful tool for identifying previously unknown or unexpected compounds and their TP in water samples by non-target analysis.
Achten, Christine | Professur für Angewandte Geologie (Prof. Achten) |
Oberleitner, Daniela | Institute and Museum of Geology and Palaeontology |
Schmid, Robin | Institute of Inorganic and Analytical Chemistry |