Local field effects in ultrafast light-matter interaction measured by pump-probe spectroscopy of monolayer MoSe2

Rodek, A.; Hahn, T.; Kasprzak, J.; Kasimierczuk, T.; Nogajewski, K.; Połczyńska, K.E.; Watanabe, K.; Taniguchi, T.; Kuhn, T.; Machnikowski, P.; Potemski, M.; Wigger, D.; Kossacki, P.

Research article (journal) | Peer reviewed

Abstract

Using ultrafast resonant pump-probe spectroscopy in an unconventional experimental setup we investigate the spectral shape and dynamics of absorption features related to the A exciton in an hexagonal boron nitride (hBN)/MoSe2/hBN van der Waals heterostructure. While in a pure two-level system a pump-probe experiment measures the occupation or the polarization dynamics, depending on the time ordering of the pulse pair, in the transition metal dichalcogenide (TMD) system both quantities get thoroughly mixed by strong exciton–exciton interaction. We find that for short positive delays the spectral lines experience pronounced changes in their shape and energy and they relax to the original situation on a picosecond time scale. For negative delays, distinctive spectral oscillations appear indicating the first-time observation of perturbed free induction decay for a TMD system. The comparison between co-circular and cross-circular excitation schemes further allows us to investigate the rapid inter-valley scattering. By considering a three-level system as a minimal model including the local field effect, excitation-induced dephasing (EID), and scattering between the excited states we explain all phenomena observed in the experiment with excellent consistency. Our handy model can be even further reduced to two levels in the case of a co-circular excitation, for which we derive analytic expressions to describe the detected signals. This allows us to trace back the spectral shapes and shifts to the impact of local field effect and EID thus fully reproducing the complex behavior of the observed effects.

Details about the publication

JournalNanophotonics (Nanophot)
Volume10
Page range2717-2728
StatusPublished
Release year2021
Language in which the publication is writtenEnglish
DOI10.1515/nanoph-2021-0194
Link to the full texthttps://doi.org/10.1515/nanoph-2021-0194
KeywordsPump-probe spectroscopy; 2D semiconductors

Authors from the University of Münster

Hahn, Thilo
Institute of Solid State Theory
Kuhn, Tilmann
Professur für Festkörpertheorie (Prof. Kuhn)
Wigger, Daniel
Professur für Festkörpertheorie (Prof. Kuhn)