Manishankar P, Wang N, Köster P, Alatar AA, Kudla J
Research article (journal) | Peer reviewedSoil composition largely defines the living conditions of plants and represents one of their most relevant, dynamic and complex environmental cues. The effective concentrations of many either tolerated or essential ions and compounds in the soil usually differ from the optimum that would be most suitable for plants. In this regard, salinity - caused by excess of NaCl - represents a widespread adverse growth condition but also shortage of ions like K+, NO3- and Fe2+ restrains plant growth. During the past years many components and mechanisms that function in the sensing and establishment of ion homeostasis have been identified and characterized. Here, we reflect on recent insights that extended our understanding of components and mechanisms, which govern and fine-tune plant salt stress tolerance and ion homeostasis. We put special emphasis on mechanisms that allow for interconnection of the salt overly sensitivity pathway with plant development and discuss newly emerging functions of Ca2+ signaling in salinity tolerance. Moreover, we review and discuss accumulating evidence for a central and unifying role of Ca2+ signaling and Ca2+ dependent protein phosphorylation in regulating sensing, uptake, transport and storage processes of various ions. Finally, based on this cross-field inventory, we deduce emerging concepts and arising questions for future research.
Köster, Philipp | Molecular Genetics and Cell Biology of Plants - Group Prof. Jörg Kudla |
Kudla, Jörg | Molecular Genetics and Cell Biology of Plants - Group Prof. Jörg Kudla |
Wang, Nili | Molecular Genetics and Cell Biology of Plants - Group Prof. Jörg Kudla |