Laser postionization of neutral molecules sputtered using bismuth and argon cluster primary ions

Heeger M, Tyler BJ, Körsgen M, Arlinghaus HF

Research article (journal) | Peer reviewed

Abstract

In this study, the influence of two different cluster primary ions in laser secondary neutral mass spectrometry (Laser-SNMS) has been investigated. Despite the many advantages of Laser-SNMS, fragmentation of neutral organic molecules during both sputtering and photoionization has limited its efficiency for the study of large organic and biological molecules. Cluster ion sputtering, and in particular large argon gas cluster sputtering, has been proposed as a means of reducing this fragmentation. Molecules of 9-fluorenylmethoxycarbonyl-pentafluoro-l-phenylalanine were sputtered using Bi3+and Ar2000+cluster primary ions, and the desorbed neutral species ("secondary neutrals") were postionized using a 7.87 eV vacuum ultraviolet laser light fluorine excimer laser. By varying timing parameters and laser power density, time-of-flight and laser power density distributions were obtained to investigate the fragmentation and energy distributions of the sputtered neutral species. Changing from 30 keV Bi3+sputtering to 10 keV Ar2000+resulted in a significant reduction in fragmentation of the molecule as well as a suppression of the high background that results from metastable decay of highly excited ions, yielding significantly improved detection of the intact molecule and characteristic fragments. Analysis of the influence of laser power density and laser pulse delay time indicates a reduction of fragmentation in both the sputtering phase and the photoionization phase. This study demonstrates the importance of soft desorption for efficient laser postionization of large organic molecules and shows the potential for improving the efficiency of laser postionization by using large gas cluster ion sputtering.

Details about the publication

JournalBiointerphases
Volume13
Issue3
StatusPublished
Release year2018 (02/03/2018)
Language in which the publication is writtenEnglish
DOI10.1116/1.5019653

Authors from the University of Münster

Arlinghaus, Heinrich
Workgroup Mass Spectrometry and Surface Science (Prof. Arlinghaus)
Center for Soft Nanoscience
Heeger, Marcel
Workgroup Mass Spectrometry and Surface Science (Prof. Arlinghaus)
Center for Soft Nanoscience
Körsgen, Martin
Workgroup Mass Spectrometry and Surface Science (Prof. Arlinghaus)
Tyler, Bonnie June
Workgroup Mass Spectrometry and Surface Science (Prof. Arlinghaus)