Legros N, Ptascheck S, Pohlentz G, Karch H, Dobrindt U, Muthing J
Research article (journal) | Peer reviewedUropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infections (UTIs) in humans. P-fimbriae are key players for bacterial adherence to the uroepithelium through the Galα1-4Gal-binding PapG adhesin. The three identified classes I, II, and III of PapG are supposed to adhere differently to host cell glycosphingolipids (GSLs) of the uroepithelial tract harboring a distal or internal Galα1-4Gal-sequence. In this study, GSL binding characteristics were obtained in a non-radioactive adhesion assay using biotinylated E. coli UTI and urine isolates combined with enzyme-linked neutravidin for detection. Initial experiments with reference globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer), globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer), and Forssman GSL (GalNAcα1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer) revealed balanced adhesion towards the three GSLs for PapG I-mediated attachment. In contrast, E. coli carrying PapG II or PapG III increasingly adhered to growing oligosaccharide chain lengths of Gb3Cer, Gb4Cer, and Forssman GSL. Binding studies with GSLs from human A498 kidney and human T24 bladder epithelial cells, both being negative for the Forssman GSL, revealed the less abundant Gb4Cer versus Gb3Cer as the prevalent receptor in A498 cells of E. coli expressing PapG II or PapG III. On the other hand, T24 cells exhibited a higher relative content of Gb4Cer versus Gb3Cer alongside with dominant binding of PapG II- or PapG III-harboring E. coli towards Gb4Cer and vastly lowered attachment to minor Gb3Cer. Further studies on PapG-mediated interaction with cell surface-exposed GSLs will improve our knowledge on the molecular mechanisms of P-fimbriae-mediated adhesion and may contribute to the development of anti-adhesion therapeutics to combat UTIs.
Dobrindt, Ulrich | Institute of Hygiene |
Karch, Helge | Institute of Hygiene |
Müthing, Johannes | Institute of Hygiene |