First order phase transitions and the thermodynamic limitOpen Access

Thiele, U.; Frohoff-Huelsmann, T.; Engelnkemper, S.; Knobloch, E.; Archer, A. J.

Research article (journal) | Peer reviewed

Abstract

We consider simple mean field continuum models for first order liquid-liquid demixing and solid-liquid phase transitions and show how the Maxwell construction at phase coexistence emerges on going from finite-size closed systems to the thermodynamic limit. The theories considered are the Cahn-Hilliard model of phase separation, which is also a model for the liquid-gas transition, and the phase field crystal model of the solid-liquid transition. Our results show that states comprising the Maxwell line depend strongly on the mean density with spatially localized structures playing a key role in the approach to the thermodynamic limit.

Details about the publication

JournalNew Journal of Physics (New J. Phys.)
Volume21
StatusPublished
Release year2019
Language in which the publication is writtenEnglish
DOI10.1088/1367-2630/ab5caf
KeywordsPhysik weicher Materie; Musterbildung und Selbstorganisation; Bifurkationstheorie; Lokalisierte Zustände; Homoklines Schlängeln; Cahn-Hilliard Modell; Phasenfeldkristallmodell; Entmischungsdynamik; Phasendiagramm; Numerische Kontinuierung; Maxwell construction; mean-field models; localized structures; phase separation; colloidal crystallization; Cahn-Hilliard model; phase field crystal model

Authors from the University of Münster

Engelnkemper, Sebastian
Professur für Theoretische Physik (Prof. Thiele)
Frohoff-Hülsmann, Tobias
Professur für Theoretische Physik (Prof. Thiele)
Thiele, Uwe
Professur für Theoretische Physik (Prof. Thiele)
Center for Nonlinear Science
Center for Multiscale Theory and Computation (CMTC)

Projects the publication originates from

Duration: since 01/01/2014
Type of project: Own resources project

Promotionen, aus denen die Publikation resultiert

Pattern formation with mass conservation From passive to active models
Candidate: Frohoff-Hülsmann, Tobias | Supervisors: Thiele, Uwe; Gurevich, Svetlana | Reviewers: Thiele, Uwe; Gurevich, Svetlana; Krenner, Hubert; Bär, Markus
Period of time: 01/10/2017 - 21/04/2023
Doctoral examination procedure finished at: Doctoral examination procedure at University of Münster