Continuous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy

Arkhipov A., Hüve J., Kahms M., Peters R., Schulten K.

Research article (journal) | Peer reviewed

Abstract

Continuous fluorescence microphotolysis (CFM) and fluorescence correlation spectroscopy (FCS) permit measurement of molecular mobility and association reactions in single living cells. CFM and FCS complement each other ideally and can be realized using identical equipment. So far, the spatial resolution of CFM and FCS was restricted by the resolution of the light microscope to the micrometer scale. However, cellular functions generally occur on the nanometer scale. Here, we develop the theoretical and computational framework for CFM and FCS experiments using 4Pi microscopy, which features an axial resolution of ∼100 nm. The framework, taking the actual 4Pi point spread function of the instrument into account, was validated by measurements on model systems, employing 4Pi conditions or normal confocal conditions together with either single- or two-photon excitation. In all cases experimental data could be well fitted by computed curves for expected diffusion coefficients, even when the signal/noise ratio was small due to the small number of fluorophores involved. © 2007 by the Biophysical Society.

Details about the publication

JournalBiophysical Journal (Biophys J.)
Volume93
Issue11
Page range4006-4017
StatusPublished
Release year2007
Language in which the publication is writtenEnglish
DOI10.1529/biophysj.107.107805
Link to the full texthttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=36849062613∨igin=inward
KeywordsCFM; FCS; Superresolution

Authors from the University of Münster

Hüve, Jana
Institute of Medical Physics and Biophysics
Kahms, Martin
Institute of Medical Physics and Biophysics