Upregulation of SERCA2a following short-term ACE inhibition (by enalaprilat) alters contractile performance and arrhythmogenicity of healthy myocardium in rat.

Matus M, Kucerova D, Kruzliak P, Adameova A, Doka G, Turcekova K, Kmecova J, Kyselovic J, Krenek P, Kirchhefer U, Mueller F, Boknik P, Klimas J

Research article (journal) | Peer reviewed

Abstract

Chronic angiotensin-converting enzyme inhibitor (ACEIs) treatment can suppress arrhythmogenesis. To examine whether the effect is more immediate and independent of suppression of pathological remodelling, we tested the antiarrhythmic effect of short-term ACE inhibition in healthy normotensive rats. Wistar rats were administered with enalaprilat (ENA, i.p., 5 mg/kg every 12 h) or vehicle (CON) for 2 weeks. Intraarterial blood pressure in situ was measured in A. carotis. Cellular shortening was measured in isolated, electrically paced cardiomyocytes. Standard 12-lead electrocardiography was performed, and hearts of anaesthetized open-chest rats were subjected to 6-min ischemia followed by 10-min reperfusion to examine susceptibility to ventricular arrhythmias. Expressions of calcium-regulating proteins (SERCA2a, cardiac sarco/endoplasmic reticulum Ca(2+)-ATPase; CSQ, calsequestrin; TRD, triadin; PLB, phospholamban; Thr(17)-PLB-phosphorylated PLB at threonine-17, FKBP12.6, FK506-binding protein, Cav1.2-voltage-dependent L-type calcium channel alpha 1C subunit) were measured by Western blot; mRNA levels of L-type calcium channel (Cacna1c), ryanodine receptor (Ryr2) and potassium channels Kcnh2 and Kcnq1 were measured by qRT-PCR. ENA decreased intraarterial systolic as well as diastolic blood pressure (by 20%, and by 31%, respectively, for both P < 0.05) but enhanced shortening of cardiomyocytes at basal conditions (by 34%, P < 0.05) and under beta-adrenergic stimulation (by 73%, P < 0.05). Enalaprilat shortened QTc interval duration (CON 78 ± 1 ms vs. ENA 72 ± 2 ms; P < 0.05) and significantly decreased the total duration of ventricular fibrillations (VF) and the number of VF episodes (P < 0.05). Reduction in arrhythmogenesis was associated with a pronounced upregulation of SERCA2a (CON 100 ± 20 vs. ENA 304 ± 13; P < 0.05) and complete absence of basal Ca(2+)/calmodulin-dependent phosphorylation of PLB at Thr(17). Short-term ACEI treatment can provide protection against I/R injury-induced ventricular arrhythmias in healthy myocardium, and this effect is associated with increased SERCA2a expression.

Details about the publication

JournalMolecular and Cellular Biochemistry (Mol Cell Biochem)
Volume403
Issue1-2
Page range199-208
StatusPublished
Release year2015
Language in which the publication is writtenEnglish
Link to the full textPM:25663023; ISI:000355432700020

Authors from the University of Münster

Boknik, Peter
Institute of Pharmacology and Toxicology
Kirchhefer, Uwe
Institute of Pharmacology and Toxicology
Kucerova, Dana
Institute of Pharmacology and Toxicology
Müller, Frank Ulrich
Institute of Pharmacology and Toxicology