Lessing S., Thomas C., Saki M., Schmerr N., Vanacore E.
Research article (journal) | Peer reviewedThe PP precursors are seismic waves that form from underside reflections of P waves off discontinuities in the upper mantle transition zone (MTZ). These seismic phases are used to map discontinuity topography, sharpness, and impedance contrasts; the resulting structural variations are then often interpreted as evidence for temperature and/or mineralogy variations within the mantle. The PP precursors as well as other seismic phases have been used to establish the global presence of seismic discontinuities at 410 and 660 km depth. Intriguingly, in more than 80 per cent of PP precursor observations the seismic wave amplitudes are significantly weaker than the amplitudes predicted by seismic reference models. Even more perplexing is the observation that 1-5 per cent of all earthquakes (which are 20-25 per cent of earthquakes with clear PP waveforms) do not show any evidence for the PP precursors from the discontinuities even in the presence of well-developed PP waveforms. Non-detections are found in six different data sets consisting of tens to hundreds of events. We use synthetic modelling to examine a suite of factors that could be responsible for the absence of the PP precursors. The take-off angles for PP and the precursors differ by only 1.2-1.5°; thus sourcerelated complexity would affect PP and the precursors. A PP wave attenuated in the upper mantle would increase the relative amplitude of the PP precursors. Attenuation within the transition zone could reduce precursor amplitudes, but this would be a regional phenomenon restricted to particular source receiver geometries. We also find little evidence for deviations from the theoretical travel path of seismic rays expected for scattered arrivals. Factors that have a strong influence include the stacking procedures used in seismic array techniques in the presence of large, interfering phases, the presence of topography on the discontinuities on the order of tens of kilometres, and 3-D lateral heterogeneity in the velocity and density changes with depth across the transition zone. We also compare the observed precursors' amplitudes with seismicmodels from calculations of phase equilibria and find that a seismic velocity model derived from a pyrolite composition reproduces the data better than the currently available 1-D earth models. This largely owes to the pyrolite models producing a stronger minimum in the reflection coefficient across the epicentral distances where the reduction in amplitudes of the PP precursors is observed. To suppress the precursors entirely in a small subset of earthquakes, other effects, such as localized discontinuity topography and seismic signal processing effects are required in addition to the changed velocity model.
Thomas, Christine | Professur für Geophysik (Prof. Thomas) |