Simulating transcranial direct current stimulation with a detailed anisotropic human head model

Rampersad S., Janssen A., Lucka F., Aydin U., Lanfer B., Lew S., Wolters C., Stegeman D., Oostendorp T.

Research article (journal) | Peer reviewed

Abstract

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique able to induce long-lasting changes in cortical excitability that can benefit cognitive functioning and clinical treatment. In order to both better understand the mechanisms behind tDCS and possibly improve the technique, finite element models are used to simulate tDCS of the human brain. With the detailed anisotropic head model presented in this study, we provide accurate predictions of tDCS in the human brain for six of the practically most-used setups in clinical and cognitive research, targeting the primary motor cortex, dorsolateral prefrontal cortex, inferior frontal gyrus, occipital cortex, and cerebellum. We present the resulting electric field strengths in the complete brain and introduce new methods to evaluate the effectivity in the target area specifically, where we have analyzed both the strength and direction of the field. For all cerebral targets studied, the currently accepted configurations produced sub-optimal field strengths. The configuration for cerebellum stimulation produced relatively high field strengths in its target area, but it needs higher input currents than cerebral stimulation does. This study suggests that improvements in the effects of transcranial direct current stimulation are achievable. © 2014 IEEE.

Details about the publication

JournalIEEE Transactions on Neural Systems and Rehabilitation Engineering
Volume22
Issue3
Page range441-452
StatusPublished
Release year2014
Language in which the publication is writtenEnglish
DOI10.1109/TNSRE.2014.2308997
Link to the full texthttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84900419704&origin=inward
KeywordsCerebellum; finite element model (FEM); motor cortex; occipital cortex; prefrontal cortex; transcranial direct current stimulation (tDCS)

Authors from the University of Münster

Aydin, Ümit
Institute for Biomagnetism and Biosignalanalysis
Lucka, Felix
Institute for Biomagnetism and Biosignalanalysis
Wolters, Carsten
Institute for Biomagnetism and Biosignalanalysis