Tekook MA, Fabritz L, Kirchhof P, König S, Müller FU, Schmitz W, Tal T, Zlotkin E, Kirchhefer U
Research article (journal) | Peer reviewedAnti-insect depressant toxins represent a subfamily of scorpion venom-derived β-toxins that are polypeptides composed of 61-65 amino acid residues stabilized by four disulfide bridges. These toxins affect the activation of voltage-sensitive sodium channels (NaScTx) and exhibit the preferential ability to induce flaccid paralysis in insect larvae. Here we demonstrate the recombinant expression of the novel cardiac inotropic peptide (Bj-IP) that was classified as an anti-insect depressant βNaScTx isolated from the venom of Hottentotta judaicus. By using "splicing by overlap extension" (SOE)-PCR, allowing for the first time one step de novo synthesis of long-chain scorpion toxin genes, we generated a codon-optimized DNA fragment of Bj-IP for cloning into the Escherichiacoli vector pQE30. Moreover, the gene of interest was fused to a 6xHis DNA coding sequence. Subsequent recombinant expression was performed in E. coli KRX. The purification of the polypeptide was achieved by a combination of NiNTA agarose columns and RP (C(18)) high-performance liquid chromatography. The purified fusion protein was digested with factor Xa resulting in the elution of Bj-IP. The yield of recombinant Bj-IP expression was approximately 4.5 mg per litre of culture. Mass spectrometry confirmed the theoretical total mass of Bj-IP (6608 Da). Tag-free Bj-IP was refolded in guanidine chloride buffer with a glutathione redox system which was supplemented with different additives at 16 °C. Supplementation with 10% glycerol produced Bj-IP folding forms that exhibited reproducible biological activity in mouse cardiomyocytes. Cell contractility was increased by almost 3-fold and decay kinetics were hasten by 47% after administration of Bj-IP. Taken together, here we show the recombinant expression of the functionally active cardiac inotropic peptide Bj-IP, a new βNaScTx from H. judaicus, for promising pharmacological applications. Furthermore, our data suggest that the use of SOE-PCR may help to facilitate in future the high throughput of cloning and/or modification of scorpion toxin genes.
Fabritz, Larissa | Department for Cardiovascular Medicine |
Kirchhefer, Uwe | Institute of Pharmacology and Toxicology |
Kirchhof, Paulus | Department for Cardiovascular Medicine |
König, Simone | Interdisciplinary Centre for Clinical Research (IZKF) |
Müller, Frank Ulrich | Institute of Pharmacology and Toxicology |
Schmitz, Wilhelm | Institute of Pharmacology and Toxicology |
Tekook, Marcel | Institute of Pharmacology and Toxicology |