Approximations and Lipschitz continuity in $p$-adic semi-algebraic and subanalytic geometry

Cluckers R, Halupczok I

Research article (journal)

Abstract

It was already known that a p-adic, locally Lipschitz continuous semi-algebraic function is piecewise Lipschitz continuous, where the pieces can be taken semi-algebraic. We prove that if the function has locally Lipschitz constant 1, then it is also piecewise Lipschitz continuous with the same Lipschitz constant 1. We do this by proving the following fine preparation results for p-adic semi-algebraic functions in one variable. Any such function can be well approximated by a monomial with fractional exponent such that moreover the derivative of the monomial is an approximation of the derivative of the function. We also prove these results in parametrized versions and in the subanalytic setting.

Details about the publication

JournalSelecta Mathematica (New Series) (Selecta Math. (N.S.))
Page range1-13
StatusPublished
Release year2012

Authors from the University of Münster

Halupczok, Immanuel
Institute of Mathematical Logic and Basic Research