Equivariant toric geometry and Euler–Maclaurin formulaeOpen Access

Cappell, Sylvain; Maxim, Laurentiu; Schürmann, Jörg; Shaneson, Julius

Research article (journal) | Peer reviewed

Details about the publication

JournalCommunications on Pure and Applied Mathematics (Comm. Pure Appl. Math.)
Volume79
Issue3
Page range451-557
StatusPublished
Release year2026
DOI10.1002/cpa.70016
Link to the full texthttps://onlinelibrary.wiley.com/doi/10.1002/cpa.70016
KeywordsToric varieties; lattice polytopes; lattice points; equivariant motivic Chern and Hirzebruch classes; equivariant Hirzebruch-Riemann-Roch; Lefschetz-Riemann-Roch; localization; Euler-Maclaurin formulae

Authors from the University of Münster

Schürmann, Jörg
Mathematical Institute