Geophysical and atmospheric evolution of habitable planets.

Lammer H, Selsis F, Chassefière E, Breuer D, Griessmeier JM, Kulikov YN, Erkaev NV, Khodachenko ML, Biernat HK, Leblanc F, Kallio E, Lundin R, Westall F, Bauer SJ, Beichman C, Danchi W, Eiroa C, Fridlund M, Gröller H, Hanslmeier A, Hausleitner W, Henning T, Herbst T, Kaltenegger L, Léger A, Leitzinger M, Lichtenegger HI, Liseau R, Lunine J, Motschmann U, Odert P, Paresce F, Parnell J, Penny A, Quirrenbach A, Rauer H, Röttgering H, Schneider J, Spohn T, Stadelmann A, Stangl G, Stam D, Tinetti G, White GJ

Research article (journal)

Abstract

The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

Details about the publication

JournalAstrobiology
Volume10
Issue1
Page range45-68
StatusPublished
Release year2010 (28/02/2010)
Language in which the publication is writtenEnglish
DOI10.1089/ast.2009.0368

Authors from the University of Münster

Spohn, Tilmann
Professorship for physical planetology (Prof. Spohn)