Identification and functional analyses of molecular haplotypes of the human osteoprotegerin gene promoter.

Hagedorn C, Telgmann R, Dördelmann C, Schmitz B, Hasenkamp S, Cambien F, Paul M, Brand E, Brand-Herrmann SM

Research article (journal)

Abstract

OBJECTIVE: Osteoprotegerin (OPG) has been reported to be involved in the development of atherosclerotic disease, and OPG gene variation has been associated with plasma OPG levels and different cardiovascular disease phenotypes. However, the genetic architecture of the OPG promoter and its transcriptional regulation are poorly characterized. METHODS AND RESULTS: We identified 1008 bp of the OPG 5'-flanking region to be sufficiently transcriptionally active in osteosarcoma cell lines and generated serial promoter deletion constructs. Individual subcloning revealed the existence of 3 molecular haplotypes (MolHaps): [T(-960)-A(-946)-G(-900)-T(-864); MolHap1, wild type], [T(-960)-G(-946)-G(-900)-T(-864); MolHap2], [C(-960)-G(-946)-A(-900)-G(-864); MolHap4]. Compared to MolHap1, transcriptional activities of MolHaps 2 and 4 were significantly reduced (P=0.0018). Whereas introduction of the -159C allele reduced transcriptional activities of the full-length constructs (P=0.0014), it significantly increased activities of the deletion constructs (P=0.0005). Electrophoretic mobility shift, competition, and chromatin immunoprecipitation assays revealed specific DNA:protein interactions for the MolHaps with Sp1 and NF-1, and identified Egr1 interacting exclusively with the -159T allele. CONCLUSIONS: We propose new structural and transcriptional features within the OPG promoter region and identified MolHaps being differentially transcriptionally active and allele-dependently interacting with a proximal polymorphic site.

Details about the publication

JournalArteriosclerosis, Thrombosis, and Vascular Biology (Arterioscler Thromb Vasc Biol)
Volume29
Issue10
Page range1638-1643
StatusPublished
Release year2009
Language in which the publication is writtenEnglish
KeywordsNeurofibromin 1. Transcription Genetic; Electrophoretic Mobility Shift Assay; Osteoprotegerin; RNA Messenger; Cell Line Tumor; Promoter Regions Genetic; Binding Sites; Haplotypes; Sp1 Transcription Factor; Humans; Neurofibromin 1. Transcription Genetic; Electrophoretic Mobility Shift Assay; Osteoprotegerin; RNA Messenger; Cell Line Tumor; Promoter Regions Genetic; Binding Sites; Haplotypes; Sp1 Transcription Factor; Humans

Authors from the University of Münster

Paul, Matthias
Department for Cardiovascular Medicine
Schmitz, Boris
Leibniz Institute of Arteriosclerosis Research (LIFA)