Lewin G, Matus M, Basu A, Frebel K, Rohsbach SP, Safronenko A, Seidl MD, Stümpel F, Buchwalow I, König S, Engelhardt S, Lohse MJ, Schmitz W, Müller FU
Research article (journal) | Peer reviewedBACKGROUND: Chronic stimulation of the beta(1)-adrenoceptor (beta(1)AR) plays a crucial role in the pathogenesis of heart failure; however, underlying mechanisms remain to be elucidated. The regulation by transcription factors cAMP response element-binding protein (CREB) and cyclic AMP response element modulator (CREM) represents a fundamental mechanism of cyclic AMP-dependent gene control possibly implicated in beta(1)AR-mediated cardiac deterioration. METHODS AND RESULTS: We studied the role of CREM in beta(1)AR-mediated cardiac effects, comparing transgenic mice with heart-directed expression of beta(1)AR in the absence and presence of functional CREM. CREM inactivation protected from cardiomyocyte hypertrophy, fibrosis, and left ventricular dysfunction in beta(1)AR-overexpressing mice. Transcriptome and proteome analysis revealed a set of predicted CREB/CREM target genes including the cardiac ryanodine receptor, tropomyosin 1alpha, and cardiac alpha-actin as altered on the mRNA or protein level along with the improved phenotype in CREM-deficient beta(1)AR-transgenic hearts. CONCLUSIONS: The results imply the regulation of genes by CREM as an important mechanism of beta(1)AR-induced cardiac damage in mice.
König, Simone | Interdisciplinary Centre for Clinical Research (IZKF) |
Müller, Frank Ulrich | Institute of Pharmacology and Toxicology |
Schmitz, Wilhelm | Institute of Pharmacology and Toxicology |
Seidl, Matthias | Institute of Pharmacology and Toxicology |
Stümpel, Frank | Institute of Pharmacology and Toxicology |