Recovery of release cloud from laser shock-loaded graphite and hydrocarbon targets: in search of diamonds

K, Schuster; K,Voigt; B, Klemmed; N,J, Hartley; J, Lütgert; M, Zhang; C, Bähtz; A, Benad; C ,Brabetz; T, Cowan; T, Döppner; D, J, Erb; A, Eychmüller; S, Facsko; R, W, Falcone; L,B, Fletcher; S, Frydrych; G, C, Ganzenmüller; D, O, Gericke; S, H, Glenzer; J, Grenzer; U, Helbig; S, Hiermaier; R ,Hübner; A, Laso Garcia; H,J, Lee; M, J, MacDonald; E, E, McBride; P, Neumayer; A, Pak; A, Pelka; I,Prencipe; A, Prosvetov; A, Rack; A, Ravasio; R, Redmer; D, Reemts; M, Rödel; M, Schoelmerich; D, Schumacher; M, Tomut; S, J ,Turner; A, M, Saunders; P, Sun; J, Vorberger; A, Zettl; D, Kraus;

Research article (journal) | Peer reviewed

Abstract

This work presents first insights into the dynamics of free-surface release clouds from dynamically compressed polystyrene and pyrolytic graphite at pressures up to 200 GPa, where they transform into diamond or lonsdaleite, respectively. These ejecta clouds are released into either vacuum or various types of catcher systems, and are monitored with high-speed recordings (frame rates up to 10 MHz). Molecular dynamics simulations are used to give insights to the rate of diamond preservation throughout the free expansion and the catcher impact process, highlighting the challenges of diamond retrieval. Raman spectroscopy data show graphitic signatures on a catcher plate confirming that the shock-compressed PS is transformed. First electron microscopy analyses of solid catcher plates yield an outstanding number of different spherical-like objects in the size range between ten(s) up to hundreds of nanometres, which are one type of two potential diamond candidates identified. The origin of some objects can unambiguously be assigned, while the history of others remains speculative.

Details about the publication

JournalJournal of Physics D: Applied Physics
Volume56
Issue2
Page range025301null
StatusPublished
Release year2022 (09/12/2022)
DOIDOI 10.1088/1361-6463/ac99e8
Link to the full texthttps://iopscience.iop.org/article/10.1088/1361-6463/ac99e8/meta
Keywordsrecovery; nanodiamonds; laser-induced shock compression; high energy density

Authors from the University of Münster

Tomut, Marilena Tatiana
Professorship of Materials Physics (Prof. Wilde)