Characterizing NIP henselian fields

Anscombe, Sylvy; Jahnke, Franziska

Research article (journal) | Peer reviewed

Abstract

In this paper, we characterize NIP (Not the Independence Property) henselian valued fields modulo the theory of their residue field, both in an algebraic and in a model-theoretic way. Assuming the conjecture that every infinite NIP field is either separably closed, real closed, or admits a nontrivial henselian valuation, this allows us to obtain a characterization of all theories of NIP fields.

Details about the publication

JournalJournal of the London Mathematical Society (J. London Math. Soc.)
Volume109
Issue3
Article numbere12868
StatusPublished
Release year2024
DOI10.1112/jlms.12868
KeywordsHenselian fields, NIP, Classification Theory

Authors from the University of Münster

Jahnke, Franziska
Junior professorship for theoretical mathematics (Prof. Jahnke)