Structural and Mechanistic Analysis of the Choline Sulfatase from &ITSinorhizobium melliloti&IT: A Class I Sulfatase Specific for an Alkyl Sulfate EsterOpen Access

van Loo, Bert; Schober, Markus; Valkov, Eugene; Heberlein, Magdalena; Bornberg-Bauer, Erich; Faber, Kurt; Hyvoenen, Marko; Hollfelder, Florian

Research article (journal) | Peer reviewed

Abstract

Hydrolysis of organic sulfate esters proceeds by two distinct mechanisms, water attacking at either sulfur (S–O bond cleavage) or carbon (C–O bond cleavage). In primary and secondary alkyl sulfates, attack at carbon is favored, whereas in aromatic sulfates and sulfated sugars, attack at sulfur is preferred. This mechanistic distinction is mirrored in the classification of enzymes that catalyze sulfate ester hydrolysis: arylsulfatases (ASs) catalyze S–O cleavage in sulfate sugars and arylsulfates, and alkyl sulfatases break the C–O bond of alkyl sulfates. Sinorhizobium meliloti choline sulfatase (SmCS) efficiently catalyzes the hydrolysis of alkyl sulfate choline-O-sulfate (kcat/KM = 4.8 × 103 s− 1 M− 1) as well as arylsulfate 4-nitrophenyl sulfate (kcat/KM = 12 s− 1 M− 1). Its 2.8-Å resolution X-ray structure shows a buried, largely hydrophobic active site in which a conserved glutamate (Glu386) plays a role in recognition of the quaternary ammonium group of the choline substrate. SmCS structurally resembles members of the alkaline phosphatase superfamily, being most closely related to dimeric ASs and tetrameric phosphonate monoester hydrolases. Although > 70% of the amino acids between protomers align structurally (RMSDs 1.79–1.99 Å), the oligomeric structures show distinctly different packing and protomer–protomer interfaces. The latter also play an important role in active site formation. Mutagenesis of the conserved active site residues typical for ASs, H218O-labeling studies and the observation of catalytically promiscuous behavior toward phosphoesters confirm the close relation to alkaline phosphatase superfamily members and suggest that SmCS is an AS that catalyzes S–O cleavage in alkyl sulfate esters with extreme catalytic proficiency.

Details about the publication

JournalJournal of Molecular Biology (J. Mol. Biol.)
Volume430
Issue7
StatusPublished
Release year2018 (17/02/2018)
Language in which the publication is writtenEnglish
DOI10.1016/j.jmb.2018.02.010
Link to the full texthttps://www.sciencedirect.com/science/article/pii/S0022283618300810?via%3Dihub
Keywordsarylsulfatase; alkaline phosphatase superfamily; phosphatase; catalytic promiscuity; oligomerization

Authors from the University of Münster

Bornberg-Bauer, Erich
Research Group Evolutionary Bioinformatics
Heberlein, Magdalena
Research Group Evolutionary Bioinformatics
Loo, Bert
Research Group Evolutionary Bioinformatics