Der Umgang mit Personenschäden im Risikocontrolling der Kraftfahrthaftpflichtversicherung - Ein Data Mining-Ansatz zur Prognose der Abwicklungsdauer und Abwicklungskosten auf Basis von Personeneinzelschäden

Dirkmorfeld, Matthias

Thesis (doctoral or post-doctoral)

Abstract

Der primäre Kern des Versicherungsgeschäfts liegt in der Übernahme von Risiken, die zu Verpflichtungen zur Begleichung von vorsätzlich oder fahrlässig herbeigeführten Schädigungen des Körpers oder von Eigentum eines Dritten führen können. Somit kann der Beherrschung und Vorhersage unsicherer zukünftiger Schadensituationen für Versicherungs­unternehmen eine wesentliche Bedeutung zur Sicherstellung der langfristigen Wirtschaftlichkeit und damit der Existenz des Unternehmens zugesprochen werden. Zusätzlich werden europäische Versicherungsu­nternehmen in Zukunft im Rahmen der versicherungs­spezifischen Neugestaltung der Solvabilitäts­vorschriften (Solvency II) stärker dazu verpflichtet, die eigene Risikoexponierung genau zu berechnen und gegenüber der Aufsichtsbehörde zu kommunizieren. Diese Anforderungen stellen die Versicherungswirtschaft - insbesondere im speziellen Fall der Personenschadenkollektive - vor eine große Herausforderung. Personenschadenportfolios zeichnen sich durch eine starke Inhomogenität im Abwicklungsverhalten aus. Eine wesentliche Problematik besteht aktuell für die Versicherungsunternehmen allerdings darin, dass klassische Reservierungs- und Simulationsmethoden in der Regel ein hohes Maß an Homogenität des betrachteten Risikokollektivs voraussetzen. Der Autor stellt mit seiner Studie erstmalig einen Ansatz vor, der - im Gegensatz zu den in der Versicherungspraxis angewandten Verfahren - konkrete Lösungsmöglichkeiten für den Umgang und die Vorhersage zukünftiger Schadensituationen von Personenschadenfällen aufzeigt. Im Rahmen dessen wird ein reales Personenschadenkollektiv auf Basis des Data Mining-Konzepts untersucht. Mit Hilfe von Entscheidungsbaumverfahren, Regressionen und künstlichen neuronalen Netzen werden Prognose­modelle für die zu erwartende Abwicklungsdauer sowie die durch das haftende Versicherungsunternehmen zu leistende Gesamtzahlungshöhe eines Personenschadenfalls modelliert. Das Buch kann sowohl im Rahmen der Forschung als auch im Rahmen der Anwendung in der Praxis als ausführlicher Leitfaden zur Data Mining basierten Untersuchung und Modellierung unsicherer Schadenkollektive verwendet werden. Schritt für Schritt werden die notwendigen Maßnahmen zur Identifikation und Extraktion der relevanten Zusammenhänge eines großen und inhomogenen Risikokollektivs am Beispiel von Personenschäden vorgestellt und detailliert erläutert.

Details about the publication

Publishing companyVerlag Dr. Kovač
Title of seriesSchriftenreihe innovative betriebswirtschaftliche Forschung und Praxis
Volume of series391
StatusPublished
Release year2013
Language in which the publication is writtenGerman
Type of thesisDissertation thesis
University of graduationUniversität Münster
Graduation year2013
ISBN978-3-8300-7633-9
KeywordsVersicherung; Personenschäden; Controlling; Solvency II; Data Mining; Künstliche Neuronale Netze; Entscheidungsbäume; Schadensreservierung

Authors from the University of Münster

Dirkmorfeld, Matthias
Research Team Berens (formerly Chair of Business Administration and Controlling)