Distributed energy supply systems (DESS) are highly integrated and complex systems containing a multitude of technical components including energy conversion plants, energy distribution infrastructure, and energy storage facilities. Thus, the optimization of DESS poses non-trivial, multi-criteria problems that may be considered on three levels: the synthesis level, the design level, and the operation level. At the synthesis level, the design engineer needs to optimize the structure or configuration of an existing (retrofit design) or of a new (grassroots design) energy system; this encompasses the selection of the technical components and the optimal layout of their interconnections. It should be noted that retrofit design always includes grassroots design as an alternative, and thus is the more complicated task. At the design level, one has to define the technical specifications (capacity, performance, etc.) of the units selected during synthesis. Finally, given the system synthesis and design, the optimal operation modes need to be specified and implemented for each instant of time at the operation level. Since design and operation influence the solution of the synthesis problem, all three levels must be taken into account for an optimal synthesis.
Preuß, Mike | Data Science: Statistics and Optimization (Statistik) |