It is the key goal of this project to provide a rigorous mathematical analysis for deep learning algorithms and thereby to establish mathematical theorems which explain the success and the limitations of deep learning algorithms. In particular, this projects aims (i) to provide a mathematical theory for high-dimensional approximation capacities for deep neural networks, (ii) to reveal suitable regular sequences of functions which can be approximated by deep neural networks but not by shallow neural networks without the curse of dimensionality, and (iii) to establish dimension independent convergence rates for stochastic gradient descent optimization algorithms when employed to train deep neural networks with error constants which grow at most polynomially in the dimension.
Jentzen, Arnulf | Institute for Analysis and Numerics |
Kuckuck, Benno | Mathematical Institute |