Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems

Grunddaten zum Vortrag

Art des Vortragswissenschaftlicher Vortrag
Name der VortragendenKleikamp, Hendrik
Datum des Vortrags19.03.2024
VortragsspracheEnglisch
URL zu den Präsentationsfolienhttps://www.uni-muenster.de/AMM/num/ohlberger/kleikamp/talks/algoritmy2024.pdf

Informationen zur Veranstaltung

Name der VeranstaltungMinisymposium on "New Trends in Model Order Reduction and Learning" at ALGORITMY 2024, Central-European Conference on Scientific Computing
Zeitraum der Veranstaltung15.03.2024 - 20.03.2024
Ort der VeranstaltungPodbanske
Webseite der Veranstaltunghttps://www.math.sk/alg2024/
Veranstaltet vonSlovak University of Technology in Bratislava, Comenius University in Bratislava, Algoritmy:SK s.r.o. and Union of the Slovak Mathematicians and Physicists

Zusammenfassung

We consider parametrized linear-quadratic optimal control problems and provide their online-efficient solutions by combining greedy reduced basis methods and machine learning algorithms. To this end, we first extend the greedy control algorithm, which builds a reduced basis for the manifold of optimal final time adjoint states, to the setting where the objective functional consists of a penalty term measuring the deviation from a desired state and a term describing the control energy. Afterwards, we apply machine learning surrogates to accelerate the online evaluation of the reduced model. The error estimates proven for the greedy procedure are further transferred to the machine learning models and thus allow for efficient a posteriori error certification. Numerical examples highlight the potential of the proposed methodology.
StichwörterParametrized optimal control; Model order reduction; Machine learning; Model hierarchy; Adaptivity

Vortragende der Universität Münster

Kleikamp, Hendrik
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)