Quantum fields on noncommutative geometries

Grunddaten zum Vortrag

Art des Vortragswissenschaftlicher Vortrag
Name der VortragendenWulkenhaar, Raimar
Datum des Vortrags08.12.2023
VortragsspracheEnglisch
URL zu den Präsentationsfolienhttps://ivv5hpp.uni-muenster.de/u/raimar/talks/2023/toronto23-raimar.pdf

Informationen zur Veranstaltung

Name der VeranstaltungWorkshop on Operator Algebras and Applications: Non-Commutative Geometry
Zeitraum der Veranstaltung04.12.2023 - 08.12.2023
Ort der VeranstaltungToronto
Webseite der Veranstaltunghttp://www.fields.utoronto.ca/activities/23-24/operator-noncommutative
Veranstaltet vonFields Institute

Zusammenfassung

Quantum field theories (QFT) in four dimensions tend to be trivial or difficult, often both. QFT on noncommutative geometries provide new examples to try. They are not admissible examples in the strict sense of axioms, but they share very similar challenges such as renormalisation and construction of products of distributions. Since there is a finite-dimensional approximation in terms of matrices, QFTs on noncommutative geometries come with a topological grading by the Euler characteristic of a Riemann surface. We give examples where the formal expansion in the Euler characteristic, together with topological recursion, permit to solve non-commutative QFT-models exactly. We also discuss how this topological expansion relates to questions in free probability.
StichwörterQuantenfelder; nichtkommutative Geometrie; Matrixmodelle; topologische Rekursion

Vortragende der Universität Münster

Wulkenhaar, Raimar
Professur für Reine Mathematik (Prof. Wulkenhaar)