Inference Techniques for Resilience

Grunddaten zum Vortrag

Art des Vortragswissenschaftlicher Vortrag
Name der VortragendenBraun, Tanya
Datum des Vortrags09.11.2022
VortragsspracheEnglisch
URL zu den Präsentationsfolienhttps://www.ifis.uni-luebeck.de/~braun/Talks/StaRAI-Resilience.pdf

Informationen zur Veranstaltung

Name der VeranstaltungResilienzkolloquium
Ort der VeranstaltungVirtual
Webseite der Veranstaltunghttps://www.uni-muenster.de/AlleInformatiken/resilience/

Zusammenfassung

According to Avizienis et al. (2004), resilience is a system’s ability to remain operational – although at potentially lower operational levels – when exposed to stressors and to adapt its functioning if those stressors persist. When working with formal models in the background, probabilistic inference may be used to predict or identify stressors, or compute necessary adaptations to formal models for a better representation of the system under duress. This leads to an algorithmic technical side to resilience. The inference part should keep going even if there is a sudden influx in observations or queries, or it resume as fast as possible if indeed a change in the model has occurred. This talk looks at resilience for inference. Specifically, it highlights how methods from statistical relational AI can help build more resilient algorithms using its inherent characteristics to support a system's overall resilience.
Stichwörterstatistical relational AI; lifted inference; resilience; adaptive inference; junction trees; temporal inference

Vortragende der Universität Münster

Braun, Tanya
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)