The More, the Merrier: The Power of Relations for Probabilistic Graphical Models

Grunddaten zum Vortrag

Art des Vortragswissenschaftlicher Vortrag
Name der VortragendenBraun, Tanya
Datum des Vortrags03.11.2022
VortragsspracheEnglisch
URL zu den Präsentationsfolienhttps://www.ifis.uni-luebeck.de/~braun/Talks/KI-Woche_StaRAI.pdf

Informationen zur Veranstaltung

Name der VeranstaltungWoche der KI Lübeck
Zeitraum der Veranstaltung01.11.2022 - 04.11.2022
Ort der VeranstaltungLübeck
Webseite der Veranstaltunghttps://woche-der-ki.de/index.php/kluge-kopfe-probabilistische-graphische-modelle-in-der-ki/
Veranstaltet vonDFKI Lübeck, Fraunhofer IMTE

Zusammenfassung

Our day-to-day life is characterised by uncertainty that we as humans implicitly deal with. Probabilistic graphical models like Bayesian networks or Markov networks and factor graphs explicitly model these uncertain processes to allow for probabilistic inference. These models however do not have a notion of individuals and relations among them. And our world exists of things related to things like humans connected to humans through family, work, or friendship. Combining probabilistic models with a notion of relations opens up a whole new world of possibilities: on a technical level, it allows for tractable probabilistic inference. Beyond that, it provides exciting new inference problems like asking for the most probable source of an observation and enables to reach meta-goals such as privacy-preserving probabilistic inference. This talk covers how relations help solve known and new problems in probabilistic inference.
Stichwörterstatistical relational AI, lifted inference, private inference, multi-agent decision making

Vortragende der Universität Münster

Braun, Tanya
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)