Fitting Personalized Mechanistic Mathematical Models of Acute Myeloid Leukaemia to Clinical Patient Data

Grunddaten zum Vortrag

Art des Vortragswissenschaftlicher Vortrag
Name der VortragendenGörlich, Dennis
Datum des Vortrags12.02.2021
VortragsspracheEnglisch

Informationen zur Veranstaltung

Name der VeranstaltungBIOINFORMATICS 2021 : 12th International Conference on Bioinformatics Models, Methods and Algorithms
Zeitraum der Veranstaltung11.02.2021 - 13.02.2021
Ort der VeranstaltungONLINE
Webseite der Veranstaltunghttps://bioinformatics.scitevents.org/?y=2021
Veranstaltet vonINSTICC

Zusammenfassung

In this position paper, we discussed the potential to fit mechanistic mathematical models of acute myeloid leukaemia to patient data. The overarching aim was to estimate personalized models. We briefly introduced one selected mechanistic ODE model to illustrate the approach. The usually available outcome measures, e.g. in clinical datasets, were aligned with the model’s prediction capabilities. Among the most relevant outcomes (blast load, complete remission, and survival), only blast load turned out to be well suited to be used in the model fitting process. We formulated an optimization problem that, finally, resulted in personalized model parameters. The degree of personalization could be chosen by selecting only a subset of parameters within the optimization problem. To illustrate the fitness landscape for individual patients we performed a grid search and calculated the fitness values for each grid point. The grid search revealed that an optimum exists, but that the fitness landscape can be very noisy. In these cases, gradient-based solvers will perform poorly and other algorithms needs to be chosen. Finally, we belief that personalized model fitting will be a promising approach to integrate mechanistic mathematical models into clinical research.
StichwörterMathematical modelling; Acute myeloid Leukemia;

Vortragende der Universität Münster

Görlich, Dennis
Institut für Biometrie und Klinische Forschung (IBKF)