Counting Agents in Partially Observable Stochastic Games

Grunddaten zum Vortrag

Art des Vortragswissenschaftlicher Vortrag
Name der VortragendenKarabulut, Nazlı Nur; Braun, Tanya
Datum des Vortrags25.09.2025
VortragsspracheEnglisch

Informationen zur Veranstaltung

Name der VeranstaltungECSQARU-25 18th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
Zeitraum der Veranstaltung23.09.2025 - 26.09.2025
Ort der VeranstaltungHagen
Webseite der Veranstaltunghttps://ecsqaru2025.krportal.org/

Zusammenfassung

Multi-agent decision-making under uncertainty can be modelled using partially observable stochastic games (POSGs), with numerous agents, partial observability, stochastic dynamics, and individual goals. However, POSGs are notoriously difficult to solve due to their exponential dependence on the number of agents. In this work, we present counting POSGs using the lifting technique of counting to compactly encode symmetries in a POSG, which enables using representative policies. We exploit the encoding for a counting version of the multi-agent dynamic programming operator to solve such a POSG. Doing so reduces the exponential dependence on the number of agents to a polynomial one, making the problem tractable with respect to agent numbers.
Stichwörterlifting; multi-agent decision making; POSG; histograms

Vortragende der Universität Münster

Karabulut, Nazli Nur
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)