Model order reduction and machine learning for parametrized problems
Grunddaten zum Vortrag
Art des Vortrags: wissenschaftlicher Vortrag
Name der Vortragenden: Kleikamp, Hendrik
Datum des Vortrags: 29.04.2025
Vortragssprache: Englisch
Informationen zur Veranstaltung
Name der Veranstaltung: Seminar Talk
Zeitraum der Veranstaltung: 29.04.2025
Ort der Veranstaltung: Graz
Veranstaltet von: IDea_Lab at University of Graz
Zusammenfassung
In this talk we give an introduction to the field of model order reduction for parametrized problems. These kinds of problems play an important role in many applications where the goal is to solve high-dimensional systems for a large set of different values of the involved physical parameters. Model order reduction provides different tools in order to reduced the computational complexity by approximating the high-fidelity system in a suitable way. We focus on reduced basis methods and describe their construction as well as application in the context of parametrized PDEs. Moreover, we discuss how to achieve an additional speedup using machine learning surrogates. The interplay between the reduced basis reduced order model and the machine learning surrogate allows to construct an adaptive and certified model hierarchy, which we showcase in different multi-query scenarios.
Stichwörter: Modellreduktion; parametrisierte Probleme; reduzierte Basis Method; maschinelles Lernen; adaptive Modellhierarchien
Vortragende der Universität Münster
Kleikamp, Hendrik | Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger) |