Two-stage model reduction approaches for the efficient and certified solution of parametrized optimal control problems

Grunddaten zum Vortrag

Art des Vortragswissenschaftlicher Vortrag
Name der VortragendenKleikamp, Hendrik
Datum des Vortrags05.03.2025
VortragsspracheEnglisch
URL zu den Präsentationsfolienhttps://www.uni-muenster.de/AMM/num/ohlberger/kleikamp/talks/siamcse2025.pdf

Informationen zur Veranstaltung

Name der VeranstaltungSIAM CSE (SIAM Conference on Computational Science and Engineering)
Zeitraum der Veranstaltung03.03.2025 - 07.03.2025
Ort der VeranstaltungFort Worth
Webseite der Veranstaltunghttps://www.siam.org/conferences-events/siam-conferences/cse25/
Veranstaltet vonSIAM (Society for Industrial and Applied Mathematics)

Zusammenfassung

In this talk we present an efficient reduced order model for solving parametrized linear-quadratic optimal control problems with linear time-varying state system. The fully reduced model combines reduced basis approximations of the system dynamics and of the manifold of optimal final time adjoint states to achieve a computational complexity independent of the original state space. Such a combination is particularly beneficial in the case where a deviation in a low-dimensional output is penalized. We propose different strategies for building the involved reduced order models, for instance by separate reduction of the dynamical systems and the final time adjoint states or via greedy procedures yielding a combined and fully reduced model. These algorithms are evaluated and compared for a two-dimensional heat equation problem. The numerical results show the desired accuracy of the reduced models and highlight the speedup obtained by the newly combined reduced order model in comparison to an exact computation of the optimal control or other reduction approaches.
StichwörterModellreduktion; maschinelles Lernen; Modellhierarchien; Parametrisierte Optimalsteuerungsprobleme; reduzierte Basen

Vortragende der Universität Münster

Kleikamp, Hendrik
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)