Lifting Partially Observable Stochastic Games
Grunddaten zum Vortrag
Art des Vortrags: wissenschaftlicher Vortrag
Name der Vortragenden: Karabulut, Nazlı Nur
Datum des Vortrags: 29.11.2024
Vortragssprache: Englisch
Informationen zur Veranstaltung
Name der Veranstaltung: SUM-24 16th International Conference on Scalable Uncertainty Management
Zeitraum der Veranstaltung: 27.11.2024 - 29.11.2024
Ort der Veranstaltung: Palermo
Zusammenfassung
Partially observable stochastic games (POSGs) are a Markovian formalism used to model a set of agents acting in a stochastic environment, in which each agent has its own reward function. As is common with multi-agent decision making problems, the model and runtime complexity is exponential in the number of agents, which can be prohibitively large. Lifting is a technique that treats groups of indistinguishable instances through representatives if possible, yielding tractable inference in the number of objects in a model. This paper applies lifting to the agent set in POSGs, yielding so-called isomorphic POSGs that have a model complexity no longer dependent on the number of agents, and presents a lifted solution approach that exploits this lifted agent set for space and runtime gains.
Stichwörter: multi-agent decision making; lifting; isomorphism; indistinguishability
Vortragende der Universität Münster
Karabulut, Nazli Nur | Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun) |