BKP-relations in Kontsevich model with arbitrary potential
Grunddaten zum Vortrag
Art des Vortrags: wissenschaftlicher Vortrag
Name der Vortragenden: Wulkenhaar; Raimar
Datum des Vortrags: 11.06.2024
Vortragssprache: Englisch
Informationen zur Veranstaltung
Name der Veranstaltung: The QFT path
Zeitraum der Veranstaltung: 10.06.2024 - 14.06.2024
Ort der Veranstaltung: Heidelberg
Veranstaltet von: Universität Heidelberg
Zusammenfassung
Raimar Wulkenhaar (Universität Münster) 11:40-12:30 The Kontsevich matrix model with M 3-potential is known to provide a KdV τ -function. There are generalisations to r-KdV, with time variables expressed in terms of eigenvalues of an external matrix. We report on joint work with G. Borot in which we exhibit the Kontsevich matrix model with arbitrary potential as a BKP τ -function with respect to further polynomial deformations of the potential. This gives rise to an infinite hierarchy of quadratic relations between moments of the Kontsevich measure generalised to any potential. Our result needs an extension of de Bruijn’s Pfaffian integration identity to singular kernels. In work in progress with K. Harengel we try to understand whether in case of M 4-potential, where the 1{N -leading moments are known explicitly, the BKP relations are just combinatorial identities or amount to infinitely many non-linear differential equations for the planar 2-point function.
Stichwörter: Matrix models; integrable hierarchy;
Vortragende der Universität Münster