Combinatorial Dyson-Schwinger Equations of Quartic Matrix Field Theory

Hock, A; Thürigen, J

Forschungsartikel in Online-Sammlung | Preprint | Peer reviewed

Zusammenfassung

Matrix field theory is a combinatorially non-local field theory which has recently been found to be a non-trivial but solvable QFT example. To generalize such non-perturbative structures to other models, a more combinatorial understanding of Dyson-Schwinger equations and their solutions is of high interest. To this end we consider combinatorial Dyson-Schwinger equations manifestly relying on the Hopf-algebraic structure of perturbative renormalization. We find that these equations are fully compatible with renormalization, relying only on the superficially divergent diagrams which are planar ribbon graphs, i.e. decompleted dual combinatorial maps. Still, they are of a similar kind as in realistic models of local QFT, featuring in particular an infinite number of primitive diagrams as well as graph-dependent combinatorial factors.

Details zur Publikation

Name des RepositoriumsarXiv
Artikelnummer2404.03389
Statuseingereicht / in Begutachtung
Veröffentlichungsjahr2024
Sprache, in der die Publikation verfasst istEnglisch
Link zum Volltexthttp://arxiv.org/abs/2404.03389
StichwörterQuantenfeldtheorie; Renormierung; Hopf algebra; Hochschild cohomology; Nichtkommutative Geometrie

Autor*innen der Universität Münster

Hock, Alexander
Mathematisches Institut
Thürigen, Johannes
Professur für Reine Mathematik (Prof. Wulkenhaar)