Optimal Regularity for the 2D Euler Equations in the Yudovich class

de Nitti, Nicola; Meyer, David; Seis, Christian

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We analyze the optimal regularity that is exactly propagated by a transport equation driven by a velocity field with a BMO gradient. As an application, we study the 2D Euler equations in case the initial vorticity is bounded. The sharpness of our result for the Euler equations follows from a variation of Bahouri and Chemin's vortex patch example.

Details zur Publikation

FachzeitschriftJournal de Mathématiques Pures et Appliquées
Jahrgang / Bandnr. / Volume191
StatusVeröffentlicht
Veröffentlichungsjahr2024
DOI10.1016/j.matpur.2024.103631
StichwörterEuler equations; Transport equation; Non-smooth vector fields; Littlewood–Paley; Propagation of regularity; Bahouri-Chemin's vortex patch

Autor*innen der Universität Münster

Meyer, David Tobias
Mathematisches Institut
Seis, Christian
Professur für Angewandte Mathematik (Prof. Seis)