Adaptive Photochemical Nonlinearities for Optical Neural Networks

Becker, Marlon; Riegelmeyer, Jan; Seyfried, Maximilian David; Ravoo, Bart Jan; Schuck, Carsten; Risse, Benjamin

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Optical neural networks (ONNs) hold great potential for faster and more energy-efficient information processing in coherent photonic circuits. To realize ONNs, linear combinations and nonlinear activation functions have to be implemented in an optical fashion. Optical nonlinearities are, however, still difficult to achieve, and existing designs are usually too inflexible to offer different activation functions as used in artificial neural networks. Herein, the nonlinear properties of the large and highly adaptive class of photoswitchable chemical compounds is made accessible as activation functions in ONNs by employing photo-induced isomerization in azobenzenes to steer activation behavior through nonlinear modulation of an information-carrying optical signal. The strength of the nonlinearity can be controlled by the chemical concentration while a physically motivated model describes the experimental data for systematically varied photoswitching parameters, resulting in a tunable yet interpretable activation function. Employing such an activation function in a neural network then allows to gauge its strength and perform established classification tasks. The work combines recent advances with photoswitchable chemical compounds and optical neural networks to enable control over the design of nonlinear activation functions, thus opening exciting perspectives for explaining the emergence of intelligent behavior in neural networks.

Details zur Publikation

FachzeitschriftAdvanced Intelligent Systems
Jahrgang / Bandnr. / Volume5
Ausgabe / Heftnr. / Issue12
StatusVeröffentlicht
Veröffentlichungsjahr2023
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1002/aisy.202300229
Stichwörterartificial intelligence; machine learning; neuromorphic computing; optical neural networks

Autor*innen der Universität Münster

Becker, Marlon
Juniorprofessur für Praktische Informatik (Prof. Risse)
Professur für Geoinformatics for Sustainable Development (Prof. Risse)
Ravoo, Bart Jan
Professur für Synthese Nanoskaliger Systeme (Prof. Ravoo)
Center for Soft Nanoscience (SoN)
Risse, Benjamin
Juniorprofessur für Praktische Informatik (Prof. Risse)
Professur für Geoinformatics for Sustainable Development (Prof. Risse)
Schuck, Carsten
Professur für Experimentelle Physik (Prof. Schuck)
Center for Soft Nanoscience (SoN)
Münster Nanofabrication Facility, MNF (MNF)
Seyfried, Maximilian David
Professur für Synthese Nanoskaliger Systeme (Prof. Ravoo)