Nonreciprocal Cahn-Hilliard model emerges as a universal amplitude equation

Frohoff-Hülsmann T; Thiele U

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Oscillatory behavior is ubiquitous in out-of-equilibrium systems showing spatiotemporal pattern formation. Starting from a linear large-scale oscillatory instability—a conserved-Hopf instability—that naturally occurs in many active systems with two conservation laws, we derive a corresponding amplitude equation. It belongs to a hierarchy of such universal equations for the eight types of instabilities in homogeneous isotropic systems resulting from the combination of three features: large-scale vs small-scale instability, stationary vs oscillatory instability, and instability without and with conservation law(s). The derived universal equation generalizes a phenomenological model of considerable recent interest, namely, the nonreciprocal Cahn-Hilliard model, and may be of a similar relevance for the classification of pattern forming systems as the complex Ginzburg-Landau equation.

Details zur Publikation

FachzeitschriftPhysical Review Letters (Phys. Rev. Lett.)
Jahrgang / Bandnr. / Volume131
Artikelnummer107201
StatusVeröffentlicht
Veröffentlichungsjahr2023
DOI10.1103/PhysRevLett.131.107201
StichwörterPhysik aktiver weicher Materie; Musterbildung und Selbstorganisation; Bifurkationstheorie; Nichtreziproke Wechselwirkungen; Cahn-Hilliard Modell; Data Science; conserved-Hopf instability; Amplitude Equation; Pattern Formation; Dynamical Systems; Active Matter; Nonreciprocal Interactions;

Autor*innen der Universität Münster

Frohoff-Hülsmann, Tobias
Professur für Theoretische Physik (Prof. Thiele)
Thiele, Uwe
Professur für Theoretische Physik (Prof. Thiele)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC)