Application of an adaptive model hierarchy to parametrized optimal control problems

Kleikamp, Hendrik

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

In this contribution we apply an adaptive model hierarchy, consisting of a full-order model, a reduced basis reduced order model, and a machine learning surrogate, to parametrized linear-quadratic optimal control problems. The involved reduced order models are constructed adaptively and are called in such a way that the model hierarchy returns an approximate solution of given accuracy for every parameter value. At the same time, the fastest model of the hierarchy is evaluated whenever possible and slower models are only queried if the faster ones are not sufficiently accurate. The performance of the model hierarchy is studied for a parametrized heat equation example with boundary value control.

Details zur Publikation

Herausgeber*innenP. Frolkovič, K. Mikula and D. Ševčovič
BuchtitelProceedings of the Conference Algoritmy 2024 (Band 2024)
Seitenbereich66-75
VerlagSelbstverlag / Eigenverlag
ErscheinungsortBratislava
Auflage1
StatusVeröffentlicht
Veröffentlichungsjahr2024 (19.02.2024)
Sprache, in der die Publikation verfasst istEnglisch
KonferenzAlgoritmy, Podbanske, Slowakei
ISBN978-80-89829-33-0
Link zum Volltexthttp://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/2145
StichwörterParametrized optimal control problems, adaptive model hierarchy, reduced order models, ma- chine learning, a posteriori error estimation

Autor*innen der Universität Münster

Kleikamp, Hendrik
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)