Optimizing a Diagnostic Model of Periodontitis by Using Targeted Proteomics

Reckelkamm, Stefan Lars; Kaminska, Inga; Baumeister, Sebastian-Edgar; Holtfreter, Birte; Alayash, Zoheir; Rodakowska, Ewa; Baginska, Joanna; Kaminski, Karol Adam; Nolde, Michael

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Periodontitis (PD), a widespread chronic infectious disease, compromises oral health and is associated with various systemic conditions and hematological alterations. Yet, to date, it is not clear whether serum protein profiling improves the assessment of PD. We collected general health data, performed dental examinations, and generated serum protein profiles using novel Proximity Extension Assay technology for 654 participants of the Bialystok PLUS study. To evaluate the incremental benefit of proteomics, we constructed two logistic regression models assessing the risk of having PD according to the CDC/AAP definition; the first one contained established PD predictors, and in addition, the second one was enhanced by extensive protein information. We then compared both models in terms of overall fit, discrimination, and calibration. For internal model validation, we performed bootstrap resampling (n = 2000). We identified 14 proteins, which improved the global fit and discrimination of a model of established PD risk factors, while maintaining reasonable calibration (area under the curve 0.82 vs 0.86; P < 0.001). Our results suggest that proteomic technologies offer an interesting advancement in the goal of finding easy-to-use and scalable diagnostic applications for PD that do not require direct examination of the periodontium.

Details zur Publikation

FachzeitschriftJournal of Proteome Research (J Proteome Res)
Jahrgang / Bandnr. / Volume22
Ausgabe / Heftnr. / Issue7
Seitenbereich2509-2515
StatusVeröffentlicht
Veröffentlichungsjahr2023 (03.06.2023)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1021/acs.jproteome.3c00230
Stichwörterproteomics; prediction model; periodontitis; serum biomarkers

Autor*innen der Universität Münster

Alayash, Zoheir
Institut für Versorgungsforschung in der Zahnmedizin
Baumeister, Sebastian-Edgar
Institut für Versorgungsforschung in der Zahnmedizin
Nolde, Michael
Institut für Versorgungsforschung in der Zahnmedizin
Reckelkamm, Stefan Lars
Institut für Versorgungsforschung in der Zahnmedizin