Lifted Causal Inference in Relational Domains

Luttermann, Malte; Hartwig, Mattis; Braun, Tanya; Möller, Ralf; Gehrke, Marcel

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Lifted inference exploits symmetries in probabilistic graphical models by using a representative for indistinguishable objects, thereby speeding up query answering while maintaining exact answers. Even though lifting is a well-established technique for the task of probabilistic inference in relational domains, it has not yet been applied to the task of causal inference. In this paper, we show how lifting can be applied to efficiently compute causal effects in relational domains. More specifically, we introduce parametric causal factor graphs as an extension of parametric factor graphs incorporating causal knowledge and give a formal semantics of interventions therein. We further present the lifted causal inference algorithm to compute causal effects on a lifted level, thereby drastically speeding up causal inference compared to propositional inference, e.g., in causal Bayesian networks. In our empirical evaluation, we demonstrate the effectiveness of our approach.

Details zur Publikation

Herausgeber*innenLocatello, Francesco; Didelez, Vanessa
BuchtitelCLeaR-24 Proceedings of the 3rd Conference on Causal Learning and Reasoning
Seitenbereich827-842
VerlagMLResearchPress
Erscheinungsortonline
Titel der ReiheProceedings of Machine Learning Research (ISSN: 2640-3498)
Nr. in Reihe236
StatusVeröffentlicht
Veröffentlichungsjahr2024
Sprache, in der die Publikation verfasst istEnglisch
KonferenzCLeaR-24 3rd Conference on Causal Learning and Reasoning, Los Angeles, Vereinigte Staaten
Link zum Volltexthttps://proceedings.mlr.press/v236/luttermann24a/luttermann24a.pdf
StichwörterLifting; causal inference; relational domains; causal effects

Autor*innen der Universität Münster

Braun, Tanya
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)