Lifting in Support of Privacy-preserving Probabilistic Inference

Gehrke, Marcel; Liebenow, Johannes; Mohammadi, Esfandiar; Braun, Tanya

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

The aim of privacy-preserving inference is to avoid revealing identifying information about individuals during inference. Lifted probabilistic inference works with groups of indistinguishable individuals, which has the potential to prevent tracing back a query result to a particular individual in a group. Therefore, we investigate how lifting, by providing anonymity, can help preserve privacy in probabilistic inference. Specifically, we show correspondences between $k$-anonymity and lifting and present s-symmetry as an analogue as well as PAULI, a privacy-preserving inference algorithm that ensures s-symmetry during query answering.

Details zur Publikation

FachzeitschriftKünstliche Intelligenz (KI)
Jahrgang / Bandnr. / Volume38
Ausgabe / Heftnr. / Issue3
Seitenbereich225-241
StatusVeröffentlicht
Veröffentlichungsjahr2024
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1007/s13218-024-00851-y
StichwörterLifting; privacy-preserving inference; probabilistic inference

Autor*innen der Universität Münster

Braun, Tanya
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)