Torus Orbifolds, Slice-Maximal Torus Actions, and Rational Ellipticity

Galaz-García F.; Kerin M.; Radeschi M.; Wiemeler M.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In this work, it is shown that a simply connected, rationally elliptic torus orbifold is equivariantly rationally homotopy equivalent to the quotient of a product of spheres by an almost-free, linear torus action, where this torus has rank equal to the number of odd-dimensional spherical factors in the product. As an application, simply connected, rationally elliptic manifolds admitting slice-maximal torus actions are classified up to equivariant rational homotopy. The case where the rational-ellipticity hypothesis is replaced by non-negative curvature is also discussed, and the Bott Conjecture in the presence of a slice-maximal torus action is proved.

Details zur Publikation

FachzeitschriftInternational Mathematics Research Notices (Int. Math. Res. Not.)
Jahrgang / Bandnr. / Volume2018
Ausgabe / Heftnr. / Issue18
Seitenbereich5786-5822
StatusVeröffentlicht
Veröffentlichungsjahr2018
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1093/imrn/rnx064
Link zum Volltexthttps://api.elsevier.com/content/abstract/scopus_id/85057827081
Stichwörterrational ellipticity; torus orbifolds; homotopy classification

Autor*innen der Universität Münster

Wiemeler, Michael
Professur für Differentialgeometrie (Prof. Wilking)