On the topology of moduli spaces of non-negatively curved Riemannian metrics

Tuschmann W.; Wiemeler M.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We study spaces and moduli spaces of Riemannian metrics with non-negative Ricci or non-negative sectional curvature on closed and open manifolds. We construct, in particular, the first classes of manifolds for which these moduli spaces have non-trivial rational homotopy, homology and cohomology groups. We also show that in every dimension at least seven (respectively, at least eight) there exist infinite sequences of closed (respectively, open) manifolds of pairwise distinct homotopy type for which the space and moduli space of Riemannian metrics with non-negative sectional curvature has infinitely many path components. A completely analogous statement holds for spaces and moduli spaces of non-negative Ricci curvature metrics.

Details zur Publikation

FachzeitschriftMathematische Annalen (Math. Ann.)
Jahrgang / Bandnr. / Volume384
Seitenbereich1629-1651
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1007/s00208-021-02327-y
Link zum Volltexthttps://api.elsevier.com/content/abstract/scopus_id/85121504112
Stichwörtermoduli spaces of Riemannian metrics; non-negative sectional curvature; moduli spaces of non-negative Ricci curvature metrics

Autor*innen der Universität Münster

Wiemeler, Michael
Professur für Differentialgeometrie (Prof. Wilking)