Almost non-negative curvature and rational ellipticity in cohomogeneity two

Grove K.; Wilking B.; Yeager J.; Halperin S.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

An extension of a fundamental conjecture by R. Bott suggests that all simply connected closed almost non-negatively curved manifolds M are rationally elliptic, i.e., all but finitely many homotopy groups of such M are finite. We confirm this conjecture when in addition M supports an isometric action with orbits of codimension at most two. Our proof uses the geometry of the orbit space to control the topology of the homotopy fiber of the inclusion map of an orbit in M, and is applicable to more general contexts.

Details zur Publikation

FachzeitschriftAnnales de l’Institut Fourier
Jahrgang / Bandnr. / Volume69
Ausgabe / Heftnr. / Issue7
Seitenbereich2921-2939
StatusVeröffentlicht
Veröffentlichungsjahr2019
Sprache, in der die Publikation verfasst istEnglisch
DOI10.5802/AIF.3340
Link zum Volltexthttps://api.elsevier.com/content/abstract/scopus_id/85101225709
StichwörterAlmost Non-negative Curvature; Cohomogeneity; Morse Theory; Rational ellipticity

Autor*innen der Universität Münster

Wilking, Burkhard
Professur für Differentialgeometrie (Prof. Wilking)