A knot characterization and 1-connected nonnegatively curved 4-manifolds with circle symmetry

Grove, Karsten; Wilking, Burkhard

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We classify nonnegatively curved simply connected 4-manifolds with circle symmetry up to equivariant diffeomorphisms. The main problem is to rule out knotted curves in the singular set of the orbit space. As an extension of this work we classify all knots in 𝕊3that can be realized as an extremal set with respect to an inner metric on 𝕊3that has nonnegative curvature in the Alexandrov sense.

Details zur Publikation

FachzeitschriftGeometry and Topology (Geom. Topol.)
Jahrgang / Bandnr. / Volume18
Ausgabe / Heftnr. / Issue5
Seitenbereich3091-3110
StatusVeröffentlicht
Veröffentlichungsjahr2014
Sprache, in der die Publikation verfasst istEnglisch
DOI10.2140/gt.2014.18.3091
Stichwörtermanifolds; circle; symmetry; diffeomorphisms; Alexandrov

Autor*innen der Universität Münster

Wilking, Burkhard
Professur für Differentialgeometrie (Prof. Wilking)