How to produce a Ricci flow via Cheeger-Gromoll exhaustion

Cabezas-Rivas, Esther; Wilking, Burkhard

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We prove short time existence for the Ricci flow on open manifolds of non-negative complex sectional curvature without requiring upper curvature bounds. By considering the doubling of convex sets contained in a Cheeger-Gromoll convex exhaustion and solving the singular initial value problem for the Ricci flow on these closed manifolds, we obtain a sequence of closed solutions of the Ricci flow with non-negative complex sectional curvature which subconverge to a Ricci flow on the open manifold. Furthermore, we find an optimal volume growth condition which guarantees long time existence, and give an analysis of the long time behavior of the Ricci flow. We also construct an explicit example of an immortal non-negatively curved Ricci flow with unbounded curvature for all time.

Details zur Publikation

FachzeitschriftJournal of the European Mathematical Society (JEMS)
Jahrgang / Bandnr. / Volume17
Ausgabe / Heftnr. / Issue12
Seitenbereich3153-3194
StatusVeröffentlicht
Veröffentlichungsjahr2015
Sprache, in der die Publikation verfasst istEnglisch
DOI10.4171/JEMS/582
StichwörterCheeger-Gromoll exhaustion; Complex sectional curvature; Ricci flow; Short time existence

Autor*innen der Universität Münster

Wilking, Burkhard
Professur für Differentialgeometrie (Prof. Wilking)