A Lie algebraic approach to Ricci flow invariant curvature conditions and Harnack inequalities

Wilking, Burkhard

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We consider a subset S of the complex Lie algebra so(n,ℂ) and the cone C(S) of curvature operators which are nonnegative on S. We show that C(S) defines a Ricci flow invariant curvature condition if S is invariant under AdSO(n,ℂ). The analogue for Kähler curvature operators holds as well. Although the proof is very simple and short, it recovers all previously known invariant nonnegativity conditions. As an application we reprove that a compact Kähler manifold with positive orthogonal bisectional curvature evolves to a manifold with positive bisectional curvature and is thus biholomorphic to ℂℙn. Moreover, the methods can also be applied to prove Harnack inequalities. © Walter de Gruyter Berlin · Boston 2013.

Details zur Publikation

FachzeitschriftJournal für die reine und angewandte Mathematik (J. Reine Angew. Math.)
Jahrgang / Bandnr. / Volume679
Ausgabe / Heftnr. / Issue1
Seitenbereich223-247
StatusVeröffentlicht
Veröffentlichungsjahr2013
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1515/crelle.2012.018
Stichwörtercurvature; operators; invariant; Kähler; Harnack; inequalities

Autor*innen der Universität Münster

Wilking, Burkhard
Professur für Differentialgeometrie (Prof. Wilking)