Colour Passing Revisited: Lifted Model Construction with Commutative Factors

Luttermann, Malte; Braun, Tanya; Möller, Ralf; Gehrke, Marcel

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Lifted probabilistic inference exploits symmetries in a probabilistic model to allow for tractable probabilistic inference with respect to domain sizes. To apply lifted inference, a lifted representation has to be obtained, and to do so, the so-called colour passing algorithm is the state of the art. The colour passing algorithm, however, is bound to a specific inference algorithm and we found that it ignores commutativity of factors while constructing a lifted representation. We contribute a modified version of the colour passing algorithm that uses logical variables to construct a lifted representation independent of a specific inference algorithm while at the same time exploiting commutativity of factors during an offline-step. Our proposed algorithm efficiently detects more symmetries than the state of the art and thereby drastically increases compression, yielding significantly faster online query times for probabilistic inference when the resulting model is applied.

Details zur Publikation

Herausgeber*innenWooldridge, Michael; Dy, Jennifer; Natarajan Sriraam
BuchtitelAAAI-24 Proceedings of the 38th AAAI Conference on Artificial Intelligence (Band 18)
Seitenbereich20500-20507
VerlagAAAI Press
ErscheinungsortWashington, DC
Titel der ReiheProceedings of the AAAI Conference on Artificial Intelligence (ISSN: 2374-3468)
Nr. in Reihe38
StatusVeröffentlicht
Veröffentlichungsjahr2024
Sprache, in der die Publikation verfasst istEnglisch
KonferenzAAAI-24 38th AAAI Conference on Artificial Intelligence, Vancouver, Kanada
ISBN978-1-57735-887-9
DOI10.1609/aaai.v38i18.30034
StichwörterRU: Relational Probabilistic Models, RU: Graphical Models, RU: Probabilistic Inference

Autor*innen der Universität Münster

Braun, Tanya
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)