Density of automorphicpoints in deformation rings of polarized global Galois representations

Hellmann, Eugen

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Conjecturally, the Galois representations that are attached to essen- tially selfdual regular algebraic cuspidal automorphic representations are Zariski- dense in a polarized Galois deformation ring. We prove new results in this direc- tion in the context of automorphic forms on definite unitary groups over totally real fields. This generalizes the infinite fern argument of Gouvea-Mazur and Chenevier, and relies on the construction of non-classical p-adic automorphic forms, and the computation of the tangent space of the space of trianguline Ga- lois representations. This boils down to a surprising statement about the linear envelope of intersections of Borel subalgebras

Details zur Publikation

FachzeitschriftDuke Mathematical Journal (Duke Math. J.)
Jahrgang / Bandnr. / Volume171
Ausgabe / Heftnr. / Issue13
Seitenbereich2699-2752
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
StichwörterDensity of automorphicpoints in deformation rings of polarized global Galois representations

Autor*innen der Universität Münster

Hellmann, Eugen
Professur für Theoretische Mathematik (Prof. Hellmann)