Diffusion Models in Dermatological Education: Flexible High Quality Image Generation for VR-based Clinical Simulations

Pielage, Leon; Schmidle, Paul; Marschall, Bernhard; Risse, Benjamin

Poster | Peer reviewed

Zusammenfassung

Training medical students to accurately recognize malignant melanoma is a crucial competence and part of almost all medical curricular. We here present a pipeline to generate realistic high-resolution imagery of nevus and melanoma skin lesions by using diffusion models. To ensure the required quality and flexibility we introduce three novel guidance strategies and an adapted upsampling approach which enable the generation of user-specified shapes and to integrate the lesions onto pre-defined skin textures. We evaluate our lesions qualitatively and quantitatively and integrate our results into a virtual reality (VR) simulation for clinical education. Moreover, we discuss several advantages of synthetic over real images such as the ability to facilitate adjustable learning scenarios and the preservation of patient privacy underlining the huge potential of generative image generation for medical education.

Details zur Publikation

Name des Repositoriumshttps://gaied.org/neurips2023/
StatusVeröffentlicht
Veröffentlichungsjahr2023
Sprache, in der die Publikation verfasst istEnglisch
KonferenzNeurIPS'23 Workshop: Generative AI for Education (GAIED), New Orleans, Louisiana, Vereinigte Staaten
Link zum Volltexthttps://gaied.org/neurips2023/files/16/16_paper.pdf
StichwörterDiffusion Models; Generative AI; Medical Education; Image Generation; Guidance Strategies; Upsampling; Virtual Reality; Simulation Training; Deep Learning

Autor*innen der Universität Münster

Marschall, Bernhard
Fachbereich 05 Medizinische Fakultät (FB05)
Pielage, Leon
Professur für Geoinformatics for Sustainable Development (Prof. Risse)
Risse, Benjamin
Professur für Geoinformatics for Sustainable Development (Prof. Risse)