Towards a network control theory of electroconvulsive therapy response

Hahn, Tim; Jamalabadi, Hamidreza; Nozari, Erfan; Winter, Nils R.; Ernsting, Jan; Gruber, Marius; Mauritz, Marco J.; Grumbach, Pascal; Fisch, Lukas; Leenings, Ramona; Sarink, Kelvin; Blanke, Julian; Vennekate, Leon Kleine; Emden, Daniel; Opel, Nils; Grotegerd, Dominik; Enneking, Verena; Meinert, Susanne; Borgers, Tiana; Klug, Melissa; Leehr, Elisabeth J.; Dohm, Katharina; Heindel, Walter; Gross, Joachim; Dannlowski, Udo; Redlich, Ronny; Repple, Jonathan

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Electroconvulsive Therapy (ECT) is arguably the most effective intervention for treatment-resistant depression. While large interindividual variability exists, a theory capable of explaining individual response to ECT remains elusive. To address this, we posit a quantitative, mechanistic framework of ECT response based on Network Control Theory (NCT). Then, we empirically test our approach and employ it to predict ECT treatment response. To this end, we derive a formal association between Postictal Suppression Index (PSI)—an ECT seizure quality index—and whole-brain modal and average controllability, NCT metrics based on white-matter brain network architecture, respectively. Exploiting the known association of ECT response and PSI, we then hypothesized an association between our controllability metrics and ECT response mediated by PSI. We formally tested this conjecture in N = 50 depressive patients undergoing ECT. We show that whole-brain controllability metrics based on pre-ECT structural connectome data predict ECT response in accordance with our hypotheses. In addition, we show the expected mediation effects via PSI. Importantly, our theoretically motivated metrics are at least on par with extensive machine learning models based on pre-ECT connectome data. In summary, we derived and tested a control-theoretic framework capable of predicting ECT response based on individual brain network architecture. It makes testable, quantitative predictions regarding individual therapeutic response, which are corroborated by strong empirical evidence. Our work might constitute a starting point for a comprehensive, quantitative theory of personalized ECT interventions rooted in control theory.

Details zur Publikation

FachzeitschriftPNAS Nexus
Jahrgang / Bandnr. / Volume2
Ausgabe / Heftnr. / Issue2
StatusVeröffentlicht
Veröffentlichungsjahr2023 (01.02.2023)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1093/pnasnexus/pgad032
Stichwörternetwork control theory; diffusion tensor imaging; electroconvulsive therapy; major depressive disorder; postictal suppression index

Autor*innen der Universität Münster

Blanke, Julian
Institut für Translationale Psychiatrie
Borgers, Tiana
Institut für Translationale Psychiatrie
Dannlowski, Udo
Institut für Translationale Psychiatrie
Emden, Daniel
Institut für Translationale Psychiatrie
Ernsting, Jan
Institut für Geoinformatik (ifgi)
Fisch, Lukas
Center for Nonlinear Science (CeNoS)
Groß, Joachim
Institut für Biomagnetismus und Biosignalanalyse
Grotegerd, Dominik
Institut für Translationale Psychiatrie
Gruber, Marius
Klinik für Psychische Gesundheit
Hahn, Tim
Institut für Translationale Psychiatrie
Heindel, Walter Leonhard
Klinik für Radiologie Bereich Lehre & Forschung
Kleine Vennekate, Leon
Institut für Translationale Psychiatrie
Klug, Melissa
Institut für Translationale Psychiatrie
Leehr, Elisabeth Johanna
Institut für Translationale Psychiatrie
Leenings, Ramona
Institut für Translationale Psychiatrie
Mauritz, Marco Jonas
Professur für Biomedical Computing/Modelling (Prof. Wirth)
Meinert, Susanne Leonie
Institut für Translationale Neurowissenschaften
Mönchhalfen, Verena
Institut für Translationale Psychiatrie
Redlich, Ronny
Institut für Translationale Psychiatrie
Repple, Jonathan
Institut für Translationale Psychiatrie
Sarink, Kelvin
Institut für Translationale Psychiatrie
Winter, Nils
Institut für Translationale Psychiatrie